The AmeriFlux Cyberinfrastructure Prototype – Introduction and Applications

Gretchen Miller University of California - Berkeley Berkeley Water Center (BWC)

AmeriFlux Science Meeting October 17, 2006

Outline

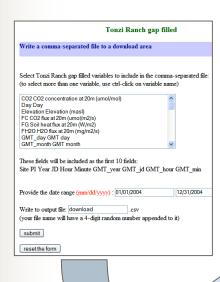
- Introduction to the prototype and the BWC
 Cyberinfrastructure Project
- Example analyses using datacube
- Comments on initial user experience
- Future improvements to the datacube
- Live example?
- Next presentation: how to use portal

Introduction

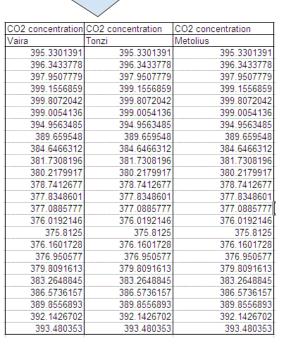
- Prototype allows easy, instant access to entire AmeriFlux database
- Designed to aid in multisite synthesis studies
- Resulted from collaboration between the Berkeley Water Center and Microsoft

What is a DataCube?

 Direct, interactive AmeriFlux database access system using Excel pivot tables

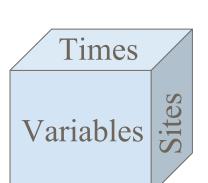

Times

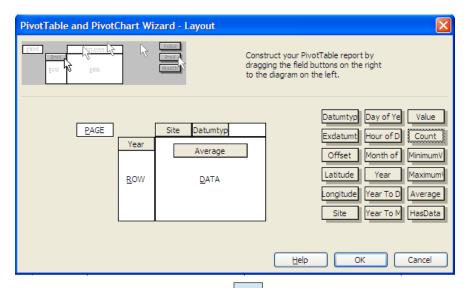
Variables


- Contains:
 - Multiple data types from
 - Multiple sites at
 - Multiple time-steps
- Automatically downloads the data you need – use now or save for later
- Connect through internet more later...

The Old Way - Linear

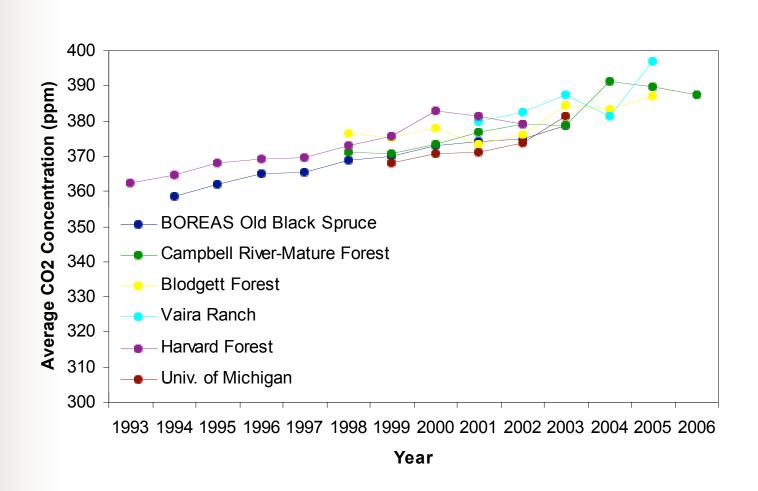
Download, copy, paste, rinse and repeat


CO2 concentration I									
Vaira	CO2 concentration								
395.	Metolius CO2 concentration								
396.	395.	Tonzi Ranch							
397.	396.	395.3301							
399.	397.	396.343							
399.	399.	397.9507779							
399.	399.	399.1556859							
394.	399.	399.8072042							
38	394.	399.0054136							
384.	389	394.9563485							
381.	384.	389.659548							
380.	381.	384.6466312							
378.	380.	381.7308196							
377.	378.	380.2179917							
377.	377.	378.7412677							
376.	377.	377.8348601							
	376.	377.0885777							
376.	070	376.0192146							
370	376.	375.8125							
379.	376	376.1601728							
383.	379.	376.950577							
386.	383.	379.8091613							
389.	386.	383.2648845							
392.	389.	386.5736157							
39:	392.	389.8556893							
	393	392.1426702							
		393.480353							



The New Way – Cubic!

Connect, select, and done



	Site					
	BOREAS NSA	Campbell River-Mature Forest	tt Fo	rest	Vaira Ranch	Harvard Forest
	Average	Average	-		Average	Average
Year	CO2 concentration	CO2 concentration	oncentration		CO2 concentration	CO2 concentration
1993						362.4899623
1994	358.4500344					364.7439787
1995	361.7871797					368.030905
1996	364.8862779					369.2956202
1997	365.2289554					369.5749438
1998	368.7482114	371.2502774	376.5199233			373.1117676
1999	369.8224038	370.5811908	375.22674			375.7325084
2000	373.1352253	373.369376	377.9258365			382.8674484
2001	374.159215	376.9836859	373.486263		379.6723482	381.5096281
2002	374.9890386	379.1057499	375.8655493		382.6557193	379.1480462
2003	378.5277665	378.6299502	384.400336	5	387.5	
2004		391.2762433	383.455527	2	381.5077891	
2005		389.8631304	387.200083	8	397.1258357	
2006		387.5196749				
Grand Tota	369.5915581	382.6706499	379.19824		385.812352	373.2583991

Example Analyses

- Example plots shown in this presentation:
 - No need for creation of advanced spreadsheets or programs
 - Most plots took under 15 minutes each to create, start to finish
- Network wide examples
- Multi-site examples

Multi-site Plots for CO₂

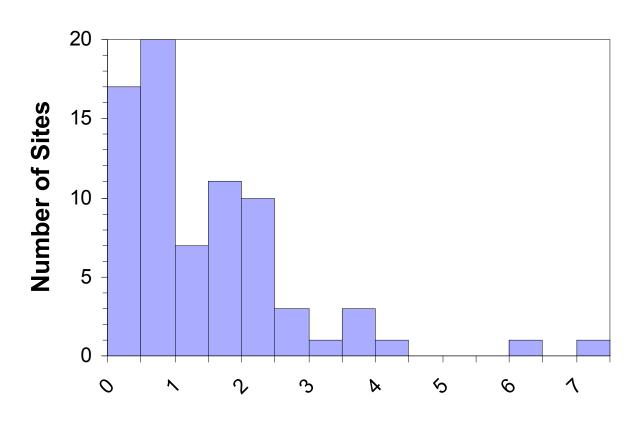
Steps to Create Average CO₂ Plot

Before

- Download data for each site from database
- Cut and paste into on spreadsheet
- Create formula to calculate yearly average for each
- Plot
- Repeat process for additional sites

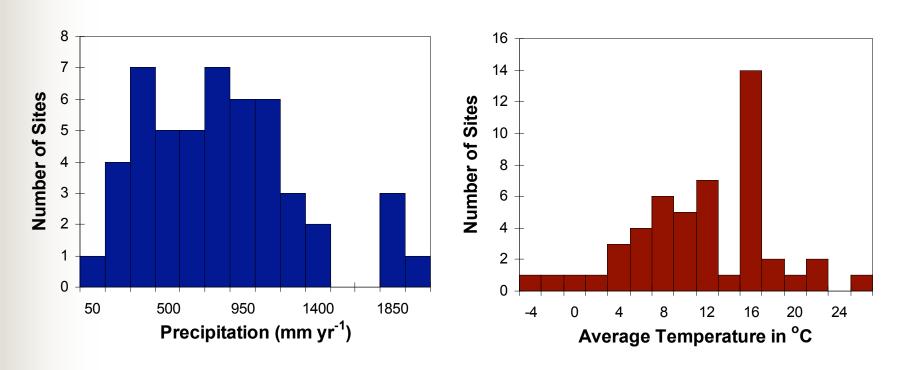
Total Time > 2 hour, dependent on number of sites analyzed

Time to add a site ~ 30 min

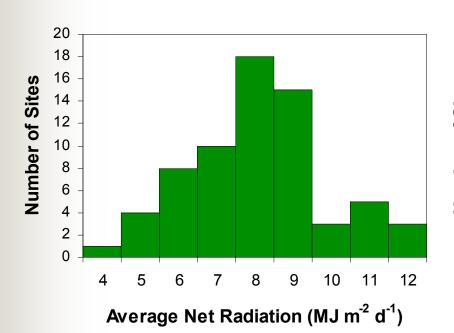

Now

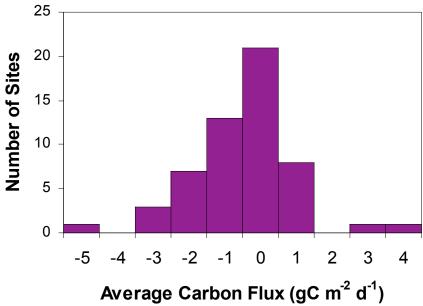
- Connect to BWC server through Excel
- Select desired sites, years, and "average" field
- Display data and plot
- Change sites by clicking twice

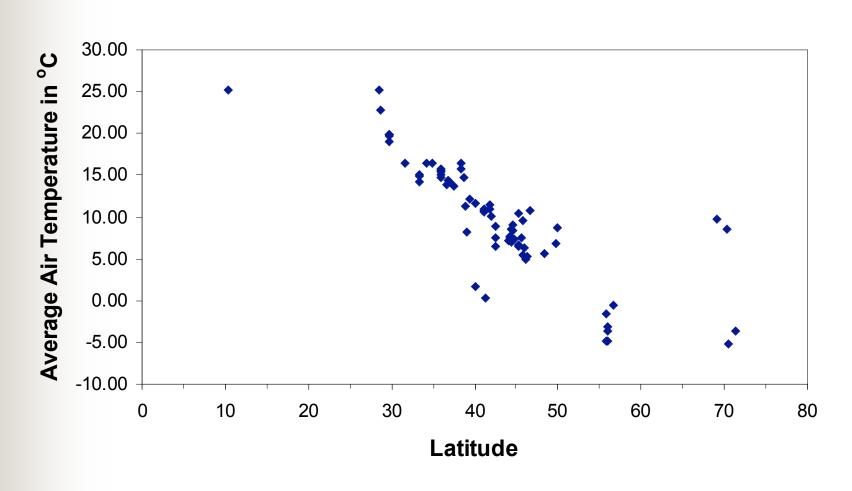
Total Time <10 min, independent of number of sites analyzed


Time to add a site < 60 sec

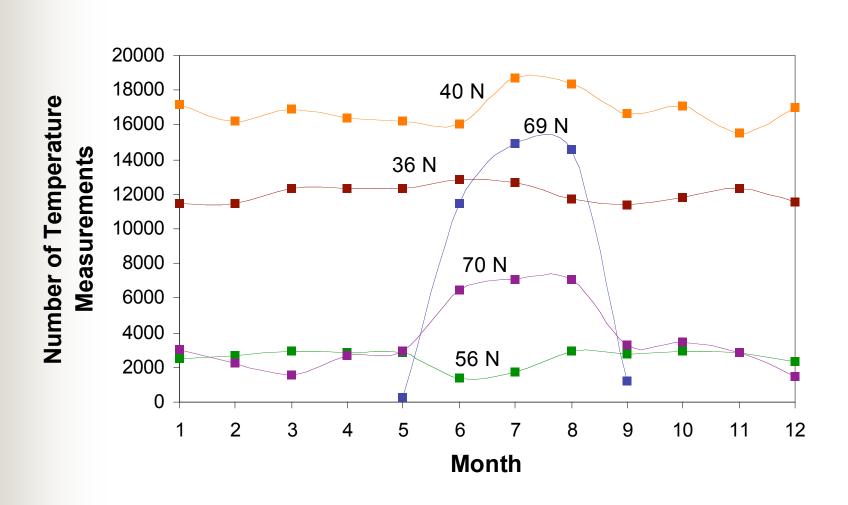
System Wide Data Availability

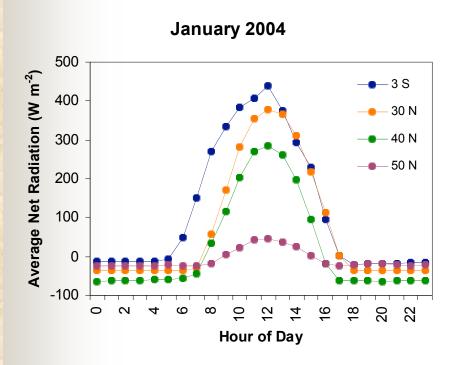

Data Points Collected (Millions)

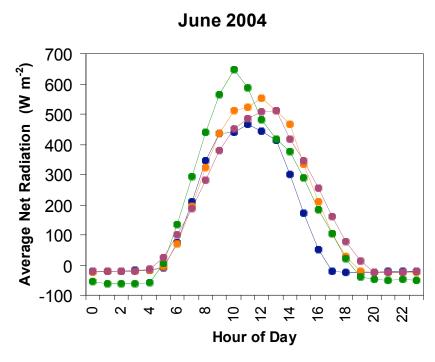

System Wide Plots for 2004 Data


Number of data points involved in each graph: 76 sites * 17,520 measurements

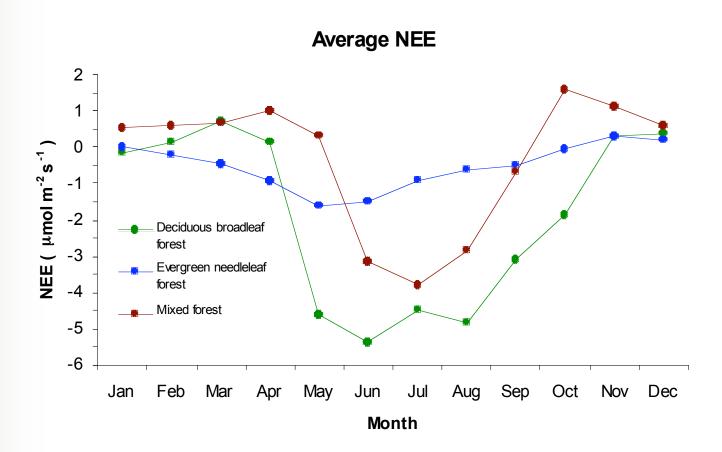
System Wide Plots for 2004 Data



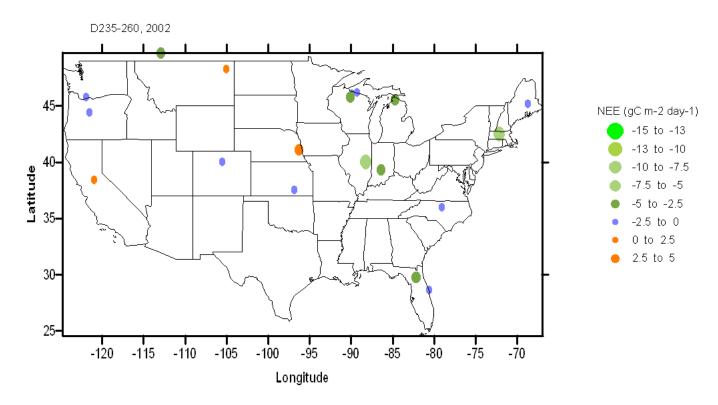

Temperature vs. Latitude



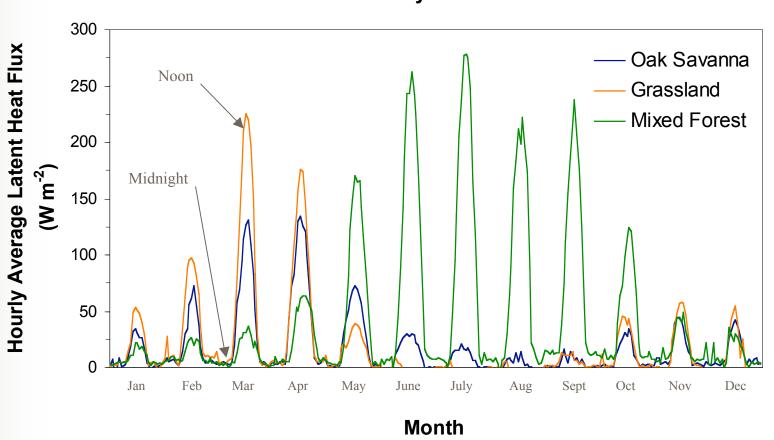
Outliers?



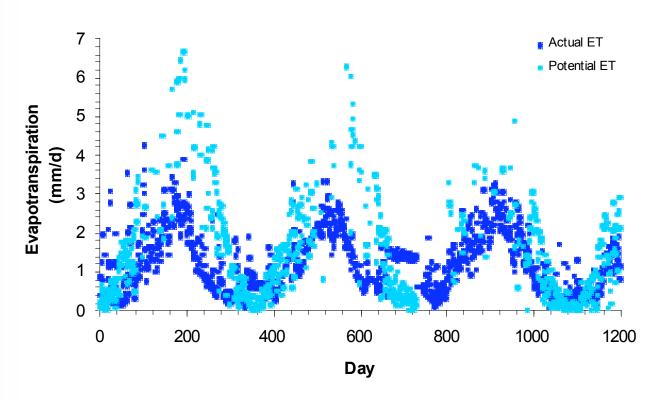
Net Radiation and Latitude



NEE by ecosystem type


Network NEE

- Compiling data for figure originally took >20 man-hours
- With new method, <1 hour


Diurnal averages

Diurnal Pattern of LE by Month for 2004

Using Calculated ET Values

Evapotranspiration at Metolius, OR Site

Potential ET calculated using Priestly-Taylor equation incorporated into data cube

Comments on initial experience

- Advantages:
 - Greatly simplifies data management
 - Decreases time spent performing repetitive calculations
 - Easier to view data from multiple sites
 - Quickly switches between "levels" of data
 - Change between yearly, monthly, daily, and hourly sums or averages in seconds
 - Less error prone
 - More eyes on the data
 - Fewer manual operations and/or programming

Comments on initial experience

- Challenges:
 - Many analyses need gap filled data
 - Some ways of displaying data can mask missing or unreasonable values
- Conclusions:
 - Think MORE, Work LESS
 - Give poor graduate students more time to do their field work

Future Improvements

- Gap filled data incorporated directly into portal
 - Currently working with a team from FLUXNET to incorporate several methods into cubes
- Built-in unit conversions and common calculations suggestions?
- Better meta-data and ecological data handling
 - Ecosystem type, soil texture, lat/long, instrument type
 - LAI, spectral reflectance, V_{cmax}, predawn water potential, soil respiration
- Alternative plotting and statistics software

Acknowledgements

- Microsoft Berkeley Water Center Project
 - Catherine van Ingen
- BWC AmeriFlux Working Group
 - Deb Agarwal, Dennis Baldocchi, Bev Law, Matt Rodriguez, Monte Goode
- Berkeley Water Center
 - Yoram Rubin, Susan Hubbard
- CarboEurope Data Team
 - Dario Papale, Markus Reichstein
- NSF Graduate Student Fellowship Program

Live Example